Soil moisture estimation using an artificial neural network: a feasibility study

نویسندگان

  • Hongli Jiang
  • William R. Cotton
چکیده

An artificial neural network (ANN) based algorithm is implemented and tested for soil moisture estimation. The ANN model is calibrated (trained) and validated (tested) with data including National Centers for Environmental Protection (NCEP) daily precipitation; normalized difference vegetation index (NDVI) data processed by the US Geological Survey Earth Resources Observations Systems (USGS EROS) data center; Geostationary Operational Environmental Satellite (GOES) based, cloud-masked infrared (IR) skin temperature produced by the University of Maryland; and soil moisture profiles measured over the Oklahoma (OK) Mesonet. The performance of the ANN model is evaluated by direct comparison between the soil moisture estimated by the ANN model and the Mesonet measurements and by examining the correlation between them. Strong correlation is demonstrated between the ANN estimates and Mesonet measurements for spatially averaged data. This work suggests that the ANN model is a promising alternative to soil moisture estimation. The advantage of the ANN approach to soil moisture estimation is that it can provide estimates having resolution commensurate with remotely sensed IR data and has the potential for worldwide coverage. Résumé. On élabore et teste un algorithme basé sur les réseaux de neurones artificiels (RNA) pour l’estimation de l’humidité du sol. Le modèle RNA est étalonné (entraîné) et validé (testé) avec des données comprenant les précipitations quotidiennes NCEP, les données d’indice NDVI (« normalized difference vegetation index ») traitées par le Centre de données EROS de la USGS, les données IR de température de la peau masquées pour les nuages produites par l’Université du Maryland à partir des données GOES et les profils d’humidité du sol mesurés au-dessus du site Mesonet de l’Oklahoma (OK). La performance du modèle RNA est évaluée par comparaison directe entre l’humidité du sol estimée par le modèle RNA et les mesures du Mesonet, et en examinant la corrélation entre ces données. Il existe une forte corrélation entre les estimations RNA et les mesures Mesonet dans le cas des données spatialement moyennées. Ce travail suggère que le modèle RNA constitue une alternative prometteuse pour l’estimation de l’humidité du sol. L’avantage de l’approche RNA pour l’estimation de l’humidité du sol réside dans le fait qu’elle donne des estimations avec une résolution compatible avec les données IR de télédétection de même que dans la possibilité de couverture à l’échelle du monde qu’elle offre. [Traduit par la Rédaction]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images

Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...

متن کامل

Mapping Dieback Intensity Distribution in Zagros Oak Forests Using Geo-statistics and Artificial Neural Network

The first and most important issue in forest drought management is knowledge of the location and severity of forest decline. In this regard, we used geostatistics and artificial neural network methods to map the dieback intensity of oak forests in the  Ilam province, Iran. We used a systematic random sampling with a 250 × 200 m grid to establish 100 plots, each covering 1200 m2. The percentage ...

متن کامل

Comparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...

متن کامل

Estimation of coal swelling index based on chemical properties of coal using artificial neural networks

Free swelling index (FSI) is an important parameter for cokeability and combustion of coals. In this research, the effects of chemical properties of coals on the coal free swelling index were studied by artificial neural network methods. The artificial neural networks (ANNs) method was used for 200 datasets to estimate the free swelling index value. In this investigation, ten input parameters ...

متن کامل

Identifying the Determinant Factors Influencing S Index in Calcereous Soils Using Anneling Simulated– Artificial Neural Network Hybrid Algorithm

Use of the curve gradient of the Soil Water Retention Curves (SWRC) in the inflection point (S Index) is one of the main indices for assessing the soil quality for management objectives in agricultural and garden lands. In this study Anneling Simulated – artificial neural network (SA-ANN) hybrid algorithm was used to identify the most effective soil features on estimation of S Index in Jiroft p...

متن کامل

Soil Moisture Estimation by Ann Using Bistatic Scatterometer Data

The microwave response of bare soil surfaces is influenced by a variety of parameters such as surface roughness, vegetation density, soil texture and soil moisture. It makes the soil moisture estimation process more complex. In such condition, the estimation of the soil moisture using microwave data with fast and less complex computing technique is a significant area of research today. The arti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004